
Programming
General Background

Machine Code

A computer is NOT a person.

If we wish to communicate something to a computer, we need to do it
in a way that the computer will understand.

Machine Code

Binary code, consisting of 1 and 0, comes from electrical engineering.
This is basically a way to say whether electrical current is flowing (1) or
not (0).

In other words binary code refers to the state as either on (1) or off (0)

Machine Code

In the Decimal system, each position of a digit represents a power of
10.

When we read a number we therefore look at the number of 1’s (in this
case 9), the number of 10’s (e.g., 3) etc.

1 2 4 3 9
104 103 102 101 100

10,000 1,000 100 10 1

Machine Code

In a binary system each digit position represents a power of 2 (4, 8, 16,
etc.).

When we read this number we can see that we have one 16, one 8 and
one 2, which would be 16+8+2 = 26

1 1 0 1 0
24 23 22 21 20

16 8 4 2 1

Machine Code

We use powers of 2 because of the way the components in the
computer (mainly transistors) operate. That is, they can have only 2
states, i.e., on or off.

Binary Code

Each digit of a binary code, is called a binary digit, or bit.

Since each bit can only convey information about a single state, on or
off, it is not too useful.

However, when we combine them into groups, we can convey much
more information.

Binary Code

When 8 bits are grouped together, we call this a byte.

The amount of possibilities of binary code in one byte is the equivalent
to 28, that is 256.

This is enough to cover all of the alphabet, as well as special characters.

Binary Code

A binary code signal is a series of electrical pulses that represent
numbers, characters, and operations to be performed.

A device called a clock sends out regular pulses, and components such
as transistors switch on (1) or off (0) to pass or block the pulses.

Binary Code

We can use binary code to both store information as well as to execute
commands.

The ability to store information was one of the biggest turning points in
terms of computer development. This was made possible by the
inventions of transistors and logic gates.

Using these components, it is possible for a machine to “remember” its
previous state

Example of a basic latch mechanism with two transistors

Basic Operations in Binary Code

Apart from storing information, we can also make some basic
operations with binary code.

Mainly addition, subtraction, multiplication and division.

Representing Negative Numbers

Obviously, representation of only positive integers is not sufficient for
mathematical applications.
To overcome this issue, the two’s complement system was invented.

Basically, to get the a negative number in binary, we take the number
we are interested in, invert the digits and add one.

The result is the negative complement of the number.

Representing Negative Numbers

Let’s use number 28 in 1 byte as an example, which in binary:
00011100

We invert the digits (1à0 and 0à1):
11100011

We add one and we get (-28):
11100100

Representing Negative Numbers

Why does this work?
It is basically simple arithmetic applied to binary. Meaning, if we were
to subtract 19 from 21

21
- 19

We treat 1 – 9 as 11 – 9, we carry a 1 from the next position.

Representing Negative Numbers

Why does this work?
1
21

- 19
2

We the subtract 1 from the next position and continue with the
subtraction as normal.

Representing Negative Numbers

Why does this work?

0
- 19
- 19

Using the same concept, when we represent a negative number, it is
the same as subtracting from 0.

Representing Negative Numbers

Why does this work?

If we are stupid (like a computer), subtracting from 0 will look like this:

Representing Negative Numbers

Why does this work?

We can do the same thing in binary (0 - 75):

Representing Negative Numbers

Why does this work?

If we work with 8 bits, subtracting from 0, will be the same as
subtracting from a 9 bits with one at the beginning.

Representing Negative Numbers

Why does this work?

This would also be the same as just working with 8bits and adding 1

Representing Fractions

Aside from working with integers (negative or positive) often we would
like to use fractions of numbers.

Using binary code, we simply need to adapt the way we interpret the
code.

Representing Fractions

We can just “shift” our positional values of any binary signal to values
smaller than 20:

Representing Fractions

Following this, we just proceed by adding the numbers as a whole, just
as before.

In this case it would be ¼ + ½ + 1 + 2 + 4 + 16 = 23 ¾ = 23.75

Representing Fractions

This way of working is called fixed-point representation.

Obviously it presents some limitations, as the name suggests, it is fixed,
meaning that we have to use the same ”shifting” when working with
the code.

Also, there is a bit of a compromise between the amount of decimal to
integers position (considering for example 8bits).

This can cause quite a lot of problems.

Representing Fractions

To overcome this issue, and also the issue of very large and very small
numbers, the concept of floating-point was introduced.

This allows the way that the bits are allocated to vary so that both very
large and very small numbers can be represented.

Representing Fractions

Representing Fractions

The floating point approach is similar to scientific notation or standard
form representation.

For example, the number 0.0007910 can be written in standard form as
7.9×10−4.

This would be converted to 7.9 as the mantissa and 10−4 as the
exponent.

Representing Characters

So far we have looked at numbers, suppose we would like to work also
with characters. Since everything is eventually converted to binary
code, we need to find a system that is able to represent characters in
binary code.

The “American Standard Code for Information Interchange” (or ASCII)
does exactly this.

ASCII

ASCII is a set of 128 numeric codes that represent the English letters,
various punctuation marks, and other characters.

ASCII

ASCII was widely used from the 1960’s to the 1990’s. Then it was slowly
replaced by Unicode, which allows for more symbols and characters
from different languages.

How does it all work in a
computer?

Components

The main components of any computer consist of:

- CPU (Central Processing Unit)
- Main Memory
- Secondary Storage Devices
- Input Devices
- Output Devices

CPU

The central processing unit, or CPU, is the part of a computer that
actually runs programs.

Each instruction in a program is a command that tells the CPU to
perform a specific operation.

Here’s an example of an instruction that might appear in a program:
10110000

CPU

Because the operations that a CPU knows how to perform are so
basic in nature, a meaningful task can be accomplished only if the CPU
performs many operations.

CPU

When a CPU executes the instructions in a program, it is engaged in a
process that is known as the fetch-decode-execute cycle.

1. Fetch read the next instruction from memory into the CPU.

2. Decode In this step the CPU decodes the instruction that was just
fetched into machine code.

3. Execute The last step in the cycle is to execute, or perform, the
operation.

CPU

It is worth noting that everything from the CPU’s point of view is in
binary.

1. Fetch – each memory unit has a unique binary address.

2. Decode – when information stored is compressed in some way (a
shorter binary string), to save memory, we therefore need to decode it.

CPU specs

What do the specifications of a CPU, e.g., 64-bit 3.9GHz, mean?

Processors work according to a clock that beats a set number of times per
second, usually measured in gigahertz.

For instance, a 3.9-GHz processor has a clock that beats 3.9 billion times per
second.

Each clock beat represents an opportunity for the processor to manipulate a
number of bits equivalent to its capacity - 64-bit processors can work on 64
bits at a time.

Main Memory

Main memory is commonly known as random-access memory, or
RAM. It is called this because the CPU is able to quickly access data
stored at any random location in RAM.

RAM is usually a volatile type of memory that is used only for
temporary storage while a program is running. When the computer is
turned off, the contents of RAM are erased.

Main Memory

RAM is characterized by:

- Bus Width - the number of bits that can be sent to the CPU
simultaneously

- Bus Speed - the number of times a group of bits can be sent each
second

Main Memory

These quantities define the efficiency of the memory, for example:

100 MHz 64-bit bus is theoretically capable of sending 8 bytes (64 bits)
of data to the CPU 100 million times per second.

In reality, RAM doesn't usually operate at optimum speed. Latency
changes the equation radically.

Optimizing Memory and Performances

The problem that computer designers face is that memory that can
keep up with a 1-gigahertz CPU is extremely expensive - much more
expensive than anyone can afford in large quantities.

One way, among many, to alleviate bottlenecks in performances is by
the use of caching.

Cache

Caching is a technology based on the memory subsystem of your
computer.

The main purpose of a cache is to accelerate your computer while
keeping the price of the computer low.

Caching allows you to do your computer tasks more rapidly

Cache

We use Caching pretty much all the time in our day to day lives.

The concept is very simple, if we use something, we want it to be
readily accessible.

Cache

When using a cache, you must check the cache to see if an item is in
there. If it is there, it's called a cache hit. If not, it is called a cache miss
and the computer must wait for a round trip from the larger, slower
memory area.

There is a bit of educated guessing when it comes to caching..

Putting it all together

The Basic Scenario

You turn the computer on.

The computer loads data from read-only memory (ROM) and performs a power-on
self-test (POST) to make sure all the major components are functioning properly.

The computer loads the basic input/output system (BIOS) from ROM. The BIOS
provides the most basic information about storage devices, boot sequence,
security, Plug and Play (auto device recognition) capability and a few other items.

The computer loads the operating system (OS) from the hard drive into the
system's RAM.

The Basic Scenario

When you open an application, it is loaded into RAM. To conserve RAM
usage, many applications load only the essential parts of the program
initially and then load other pieces as needed.

After an application is loaded, any files that are opened for use in that
application are loaded into RAM.

When you save a file and close the application, the file is written to the
specified storage device, and then it and the application are purged
from RAM.

Development of Computer
Programming

Assembly

Writing binary instructions is very tedious and time consuming.

For this reason, assembly language was created in the as an alternative
to machine language.

Instead of using binary numbers for instructions, assembly language
uses short words that are known as mnemonics.

For example, in assembly language, the mnemonic add typically means
to add numbers.

Assembly

Assembly

Assembly language programs cannot be executed by the CPU.

The CPU only understands machine language, so a special program
known as an assembler is used to translate an assembly language
program to a machine language program.

Assembly

Assembly language is a direct substitute for machine language, and like
machine language, it requires that you know a lot about the CPU.

Assembly language also requires that you write a large number of
instructions for even the simplest program.

Because assembly language is so close in nature to machine language,
it is referred to as a low-level language.

High-Level Languages

A high-level language allows you to create powerful and complex
programs without knowing how the CPU works, and without writing
large numbers of low-level instructions.

In addition, most high-level languages use words that are easy to
understand.

Compiler

A compiler is a program that translates a high-level language program
into a separate machine language program.

The machine language program can then be executed any time it is
needed.

Interpreter

Python uses an interpreter, which is a program that both translates and
executes the instructions in a high-level language program.

As the interpreter reads each individual instruction in the program, it
converts it to machine language instructions and then immediately
executes them.

C

C is considered to be a mid level programming languages.

For a long time, C was the dominating programming language and it is
still used today.

By being a mid-level programming language, it offers some advantages
compared to the higher level languages. Mainly, the code that is
written is more stable and runs faster.

C

When programming in C, we have to pay careful attention to the
memory usage.

Meaning we need to allocate and free memory manually in the code.
Also, we need to be explicit when declaring different types of variables.

Both things not necessary in more modern languages.

C

Although it is a bit redundant, it provides a better understanding of the
inner working of software and how to better design them.

In fact, most of the modern programming languages were made using
C. When we wish to create something larger than an application or an
algorithm, such as a new system, it is better to use lower level
languages (such as C), which provide better control on every
component.

Programming languages

There are a lot of common grounds between different programming
languages.

In fact, the basic concepts of programming do not change between one
language and another.

This is why knowing one language, greatly facilitates knowing another
languages

Python C

