Super Resolution Microscopy: STED 3x

The resolution and diffraction limit

The **resolution** of an optical microscope is defined as the shortest distance between two points on a specimen that can still be distinguished by the observer or camera system as separate entities.

The diffraction limit

The resolution limit in optical microscopy is 200nm

Spatial resolution of biological imaging techniques

How to enhance resolution? Super Resolution Microscopy

Stefan W. Hell, Inventor of STED-microscopy

Idea innovativa: controllare l'emissione di fluorescenza dei fluorocromi in modo tale che molecole adiacenti più vicine di 200nm emettano in momenti diversi in modo da poter essere individuate come molecole distinte

Stimulated Emission depletion (STED)

The resolution limit of **STED** microscopy is 30-50 nm

Stimulated Emission Depletion (STED)

Push the boundaries of your science – in all dimensions The new STED module

Three Different Objectives are available

	HC PL APO 100x/1.4 oil STED WHITE	HC PL APO 93x/1.3 Glyc motCORR STED WHITE	HC PL APO 86x/1.2 W motCORR STED WHITE
Magnification	100x	93x	86x
Free working distance	130 µm	300 μm	300 µm
Immersion medium	Oil	Glycerol*	Water
	Type F imm. n _e ²³ = 1.518	Type G imm. n _e ²³ = 1.45 Glycerine solution n _e ³⁷ = 1.46	Water
Application	Fixed cell samples	Deep tissue, fixed samples, live-cell	Live-cell, FCS

Advantages of STED microscopy

- Fast imaging
- Imaging in vivo
- Multicolored stainings
- Optical sectioning for 3D reconstructions
- Nanoscopic sub-cellular structures: resolution in xy 30-50 nm, resolution in z 100-120 nm

Sample preparation: the crucial points to obtain the best SR image

- > Epitope/dye distance
- Labeling density
- Choice of fluorophores
- Mounting & Immersion
- Coverslip Thickness: 170 μm

Epitope/dye distance

7 – 10nm Fab fragments: 3.5 – 5.5nm

Nanobodies/VHHs

V_HH

15kDa

2nm

Labeling density in super- resolution

Choice of fluorophores

The ideal fluorophore should have the following characteristics:

- 1-not be excitable to the wavelength of the STED laser
- 2-high photostability
- 3-high probability of de-excitation due to emission stimulated so as to reduce as much as possible the intensity of the laser sted required

8					
₹ 75					
Relative Intensity (%)					
<u>9</u> 50					
Rela				STED 660	
25					
0					
300	400	500	600 Wavelength	700	

	STED 592	STED 660	STED 775
	OG 488	AF 555	STAR635P
Fixed samples	AF 488	ATTO 542	ATTO 647N
Live-cells	Citrine / mVenus	TMR	SiR

	Fluorescent label #	1	l	Fluorescent label #2	2	STED (nm)
Name	Exc. (nm)	Em. (nm)	Name	Exc. (nm)	Em. (nm)	
STAR 440SX	458/470	475 – 510	OG 488	514/520	523 – 580	592
AF 532	532	520 – 565	TMR	580	590 – 650	660
STAR 580	580	600 - 630	STAR 635P	635	655 – 750	775

Tissue clearing strategy for 3D volumetric imaging

The CLARITY techniques removes lipid components, a major light scattering source, form tissues wich are embedded with hydrogel as a structural alternative to lipids.

1.Cut kidney in ~1-2 mm thick chunks and immerse in hydrogel solution

2. Polymerize the gel by incubating at 37° C

3.Embed sample in 3% agarose and cut the sample in 300µm thick slices using a Vibratome

4.Immerse slices in 1-5 mL of clearing solution and incubate at 50° C for 3 days

APPLICATIONS...

Studio delle componenti proteiche di membrana e subcellulari

Mitochondria – TOM20

Studio delle componenti proteiche di membrana e subcellulari

Organizzazione delle subunità dei centrioli

(left) confocal and (right) STED images of Atto647N-lgG immunostained Cep164 in fixed IMCD3 mouse cells. $P_{excitation}$ = 10 μ W, λ_{STED} = 759 nm, P_{STED} = 80mW, 0.5 ms/60 nm pixel (25 nm pixel size for STED).

Organizzazione delle subunità dei nuclear pore complex

Studi sulla co-localizzazione e clustering delle proteine

Multicolour Imaging: distribuzione delle proteine a livello nanometrico

Cos7 cells

Green: AF568 F(ab)' NUP153 Red: Atto594 TOM20 B&W: SiR Actin

Courtesy: Urs Ziegler, Jana Doehner ZMB, University of Zurich

Immunology

Living T cell in suspension - Actin visualized by Lifeact

Courtesy of Marco Fritsche, Mathias Clausen and Christian Eggeling MRC Human Immunology Unit Weatherall Institute of Molecular Medicine University of Oxford , UK

Live-Cell Imaging

SiR probe courtesy of Kai Johnsson, Grazvydas Lukinavicius EPFL, Lausanne, Switzerland

Live-Cell Imaging

SiR probe courtesy of Kai Johnsson, Grazvydas Lukinavicius EPFL, Lausanne, Switzerland

A

Dendritic Spines

Dendritic spine morphology. (A) STED image of basal dendrites on live CA1 pyramidal cells in organotypic hippocampal slice prepared from Thy1-YFP transgenic animals. The image is a maximum intensity projection over 10 μ m and is subjected to a 1-pixel median filter. Scale bar is 10 μ m.

The slit diaphragm in optically cleared kidney tissues

Study of glomerual filtration barrier in a mouse model of Diabetic Nephropathy

STED super-resolution microscopy reveals new podocytes to fully integrate into the glomerular filtration barrier

Romoli S, Angelotti ML, Antonelli G *et al*, Kidney International, 2018

Grazie per l'attenzione!